
Learn more at illuminate.nppd.comLearn more at illuminatenebraska.org

BACKGROUND

The history of software IDEs dates back to the late 1960s and early 1970s,
when developers began creating integrated software development environments
that combined code editing, debugging and compiling tools in a single
application. One of the earliest IDEs was the Dartmouth BASIC Programming
System, created in 1964, which included an editor, compiler and interpreter.
In the 1980s and 1990s, IDEs became increasingly popular as software
development became more complex, and developers needed more tools to
manage larger codebases. In the 2000s and beyond, IDEs continued to evolve,
incorporating new features such as version control, code refactoring, and
integrated testing tools. Today, IDEs are a critical tool for developers in a wide
range of fields, from web development to artificial intelligence and robotics.

TOOLS OF THE TRADE
SOFTWARE IDE

CONCEPT A Software IDE (Integrated Development
Environment) in robotics is a software application that
provides a comprehensive set of tools for developing, testing
and debugging robotic software. It typically includes a code
editor, a compiler or interpreter, a debugger and a graphical
user interface (GUI) for interacting with the robot. The IDE
provides a unified platform for developing and integrating
different components of the robotic system, including sensors,
actuators and software modules. Additionally, the IDE often
provides features for simulating the robot’s behavior in a
virtual environment, allowing developers to test and refine
their algorithms before deploying them on the physical robot.
An IDE is an essential tool for developing sophisticated, robust
software for robotics applications.

Learn more at illuminate.nppd.comLearn more at illuminatenebraska.org

powered by:

Make sure it measures upMake sure it measures up

ROBOTICS > ROBOTICS > TOOLS OF THE TRADETOOLS OF THE TRADE > > SOFTWARE IDE SOFTWARE IDE

EXAMPLES

CODE EDITOR: This is the primary
component of the IDE, where developers
can write, edit and manage the code for
the robot’s software. A code editor provides
syntax highlighting, auto-completion and
other features to help streamline the
coding process.

COMPILER/INTERPRETER: The compiler
or interpreter translates the code written
by the developer into a form the robot can
understand and execute. The compiler
generates machine code that can run on
the robot’s processor, while the interpreter
executes the code directly.

DEBUGGER: The debugger is an essential
tool for identifying and fixing errors or bugs
in the software code. It allows developers
to step through the code line by line, set
breakpoints and inspect variables in real-
time to identify and correct issues.

SIMULATOR: A simulator is a virtual
environment that emulates the behavior of
the robot. The simulator allows developers
to test and refine their software algorithms
without the need for a physical robot. It
can also help reduce development time
and costs by identifying errors early in the
development cycle.

GUI (GRAPHICAL USER INTERFACE):
The GUI is the visual interface that allows
developers to interact with the robot and its
software. It provides a visual representation
of the robot’s sensors, actuators and other
components, allowing developers to monitor
and control the robot’s behavior.

APPLICATION
One example of a software IDE used in robotics
is the Robot Operating System (ROS). ROS is an
open-source software framework that provides a
collection of tools, libraries and conventions for
developing complex robotic systems. ROS provides
a comprehensive suite of tools, including a
package manager, a build system and an IDE,
to help developers create, test and deploy
robotics software.

An example of the application of ROS is the
development of autonomous drones. Drones are
increasingly used in various industries, including
agriculture, construction and search and rescue.
ROS provides a framework for developing software
that allows drones to operate autonomously,
performing tasks such as mapping, inspection
and surveillance.

ROS includes a variety of packages for controlling
and communicating with drones, such as the
MAVROS package, which provides an interface to
the MAVLink protocol used by many drones. ROS
also includes a variety of tools for simulating drone
behavior, such as the Gazebo simulator.

Developers can use an IDE such as Eclipse or
Visual Studio Code to write and debug ROS code,
and then use the ROS build system to compile and
package the code into a deployable application.

